
FINITE BIORTHOGONAL TRANSFORMS
AND

MULTIRESOLUTION ANALYSES ON INTERVALS

Background

Suppose scaling coefficients {sk}, {s̃k} are given such that φ and φ̃ are two compactly sup-
ported functions in L2(R) which satisfy the scaling equation

φ(x) =
√

2
∑
k

skφ(2x− k), φ̃(x) =
√

2
∑
k

s̃kφ̃(2x− k),

that φ and φ̃ are biorthogonal 〈
φ(x), φ̃(x− n)

〉
= δ0n,

and that their integer shifts form Riesz bases for two subspaces of L2(R)

V0 = Linear Span of {φ(x− k) : k ∈ Z},

Ṽ0 = Linear Span of {φ̃(x− k) : k ∈ Z}.

Multiresolution analyses (MRAs) of L2(R) are generated by imposing the conditions

f(x) ∈ Vk ⇐⇒ f(2x) ∈ Vk+1, f(x) ∈ Ṽk ⇐⇒ f(2x) ∈ Ṽk+1,

(It is also assumed that
⋃
Vn and

⋃
Ṽn are dense in L2(R).)

Let
φn,k = 2n/2φ(2nx− k), φ̃n,k = 2n/2φ̃(2nx− k).

Define the projections from L2 onto Vn and Ṽn by

Pn(f) =
∑
k

〈f(x), φ̃n,k(x)〉φn,k(x), P̃n(f) =
∑
k

〈f(x), φn,k(x)〉φ̃n,k(x).

Letting Qn = Pn+1−Pn and Q̃n = P̃n+1− P̃n, we define the spaces Wn and W̃n as the range

of Qn and Q̃n, respectively. These spaces satisfy

Vn
⊕

Wn = Vn+1, Ṽn
⊕

W̃n = Ṽn+1.

These are not necessarily orthogonal sums, however the biorthogonality implies

Wn ⊥ Ṽn, W̃n ⊥ Vn.
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A fundamental result is that L2(R) =
⊕

Wn =
⊕

W̃n, and that there is an extremely simple

way to define these spaces Wn and W̃n. There exist wavelet functions

ψ(x) =
√

2
∑
k

wkφ(2x− k), ψ̃(x) =
√

2
∑
k

w̃kφ̃(2x− k)

where
wk = (−1)ks̃N−k, w̃k = (−1)ksN−k for fixed odd N

such that
Wn = The linear span of {2n/2ψ(2nx− k) : k ∈ Z},
W̃n = The linear span of {2n/2ψ̃(2nx− k) : k ∈ Z}.

Furthermore, defining bi-infinite matrices S∞ =
(
S∞j,k
)

= (sj−2k), W
∞ =

(
W∞
jk

)
= (wj−2k),

S̃∞ = (S̃∞jk ) = (s̃j−2k), W̃
∞ = (W̃∞

jk ) = (w̃j−2k), produces an invertible map T : l2 → l2 × l2
via the discrete wavelet transform. The discrete wavelet transform applied to a signal f ∈
l2(R) is defined by

Tf =

(
S
W

)
f =

(
`
h

)
,

and has exact reconstruction

f =

(
S̃

W̃

)∗(
S
W

)
f =

(
S̃

W̃

)∗(
`
h

)
.

To apply this theory to a finite length f = {fk}
2nf−1
k=0 a natural approach would be to first

periodize the data. The resulting decompositions ` and h are then periodic. Considering one
period of ` and h is equivalent to applying certain finite matrices to the original finite signal

f . We denote these matrices S, W , S̃, and W̃ . For instance,

S =


s0 s1 s2 s3 s4 s5 0 0 0 0
0 0 s0 s1 s2 s3 s4 s5 0 0
0 0 0 0 s0 s1 s2 s3 s4 s5
s4 s5 0 0 0 0 s0 s1 s2 s3
s2 s3 s4 s5 0 0 0 0 s0 s1

 .

This transformation will intertwine the data at the beginning and end of f , which is unde-
sirable. Theorem 1 addresses this.
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Current Results

Given a finite number of scaling coefficients {sk}2n+1
k=0 and {s̃k}2n+1

k=0 producing biorthogonal

scaling functions φ and φ̃, we let T =

(
S
W

)
, T̃ =

(
S̃

W̃

)
, where S, W , S̃, and W̃ are the

finite “periodized” matrices just described.

A pair of square matrices
(
M, M̃

)
are called biorthogonal if M̃∗M = M̃M∗ = I.(

T, T̃
)

form a biorthogonal pair.

Theorem 1. Given the matrices T and T̃ , there exist biorthogonal pairs of matrices
(
U, Ũ

)
and

(
V, Ṽ

)
such that Q = ŨT Ṽ , Q̃ = UT̃V are biorthogonal and consist of banded block

matrices.

V and Ṽ make use of the biorthogonality of the scaling coefficients and are defined so that

T Ṽ and T̃ V are banded. U and Ũ can be used to modify the entries in the upper-left and

lower-right sub-blocks of Q and Q̃.

Theorem 1 provides us with banded coefficient matrices, which can be used to define a

multiresolution analysis. Letting Q =

(
M
N

)
, Q̃ =

(
M̃

Ñ

)
, we have banded matrices

M =

A0 A1 A2 0 0
0 Sc 0
0 0 B0 B1 B2

 , M̃ =

Ã0 Ã1 Ã2 0 0

0 S̃c 0

0 0 B̃0 B̃1 B̃2

 ,

where Sc is a block matrix of interior rows of scaling coefficients {sk} that were unaltered
by the transform. A0, A1, A2, and B0, B1, B2 are n× n block matrices.

The rows of these modified matrices can be regarded as scaling coefficients
and used to construct a multiresolution analysis over a finite interval.
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Define
V0 = The linear span of {φj(x)}nf−1

j=0

where

φj(x) =

 φA,j(x) j = 0, . . . , n− 1
φ(x− j − n) j = n, . . . , nf − n− 1
φB,j−nf+n(x) j = nf − n, . . . , nf − 1

with Ṽ0 defined similarly. The “interior” functions are simply integer shifts of φ(x), the
original scaling function. The functions φA,j and φB,j are left and right boundary functions
defined via the first or last n rows of M , respectively. The collection is defined by the scaling
relation

(1) Φ0(x) = (φj(x)) =
√

2MΦ1(2x), Φ̃0(x) =
(
φ̃j(x)

)
=
√

2M̃Φ̃1(2x),

where Φ0 is a column vector (of length nf ) whose jth component is the function φj, and Φ1

is a column vector (of length 2nf ) which also contains the functions φj, but includes more
interior functions (more shifts of the scaling function φ). For instance, in the case of n = 1
we would have

φA(x) =
√

2 (a0φA(2x) + a1φ(2x) + a2φ(2x− 1)) .

These collections V0 and Ṽ0 are well-defined and biorthogonal if |A0|, |Ã0|, |B2|, |B̃2| < 1.
(Where |M | can be the max-norm of the entries from a matrix M , or the more typical
operator norm (spectral norm) corresponding to the 2-norm for vectors.)

Theorem 2. There exist unique solutions to (1), {φj} and {φ̃j}, which are compactly sup-

ported and satisfy 〈φj, φ̃k〉 = δj,k provided that |A0|, |Ã0|, |B2|, and |B̃2| < 1.

We define W0 as the linear span of the components of Ψ0, and W̃0 as the linear span of the

components of Ψ̃0 where

Ψ0(x) = (ψj(x)) =
√

2NΦ1(2x), Ψ̃0(x) =
(
ψ̃j(x)

)
=
√

2ÑΦ̃1(2x).

V1 is defined as the linear span of the components of Φ1(2x), and similarly for Ṽ1. This pro-
duces multiresolution analyses over [0, 2nf ] consisting of finite-dimensional subspaces.

Theorem 3. Given biorthogonal scaling functions φ(x) and φ̃(x) supported in a finite inter-

val [0, 2nf ], we have V0
⊕

W0 = V1 and Ṽ0
⊕

W̃0 = Ṽ1 (as oblique sums) as well as V0 ⊥ W̃0

and Ṽ0 ⊥ W0.

Now that we have defined the scaling and wavelet functions, their regularity and approxi-
mation properties can be explored. Let Cα denote functions which are Hölder continuous of
order α.

Theorem 4. If φ ∈ Cα then φA,j(x) is Cα for x > 0.
If φ ∈ Cα and |A0| < 2−α−1/2, then φA,j(x) is Cα at 0.

Theorem 5. If |A0| = 1√
2

and φ is Lipschitz, then ΦA is bounded.
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